Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species.
نویسندگان
چکیده
BACKGROUND Inhibition of the renin-angiotensin-aldosterone system (RAAS) provides renoprotection in adriamycin nephropathy (AN), along with a decrease in overexpression of glomerular heparanase. Angiotensin II (AngII) and reactive oxygen species (ROS) are known to regulate heparanase expression in vivo. However, it is unknown whether this is also the case for aldosterone. Therefore, we further assessed the role of aldosterone, AngII and ROS in the regulation of glomerular heparanase expression. METHODS Six weeks after the induction of AN, rats were treated with vehicle (n = 8), lisinopril (75 mg/L, n = 10), spironolactone (3.3 mg/day, n = 12) or the combination of lisinopril and spironolactone (n = 14) for 12 weeks. Age-matched healthy rats served as controls (n = 6). After 18 weeks, renal heparanase and heparan sulfate (HS) expression were examined by immunofluorescence staining. In addition, the effect of aldosterone, AngII and ROS on heparanase expression in cultured podocytes was determined. RESULTS Treatment with lisinopril, spironolactone or their combination significantly blunted the increased glomerular heparanase expression and restored the decreased HS expression in the GBM. Addition of aldosterone to cultured podocytes resulted in a significantly increased heparanase mRNA and protein expression, which could be inhibited by spironolactone. Heparanase mRNA and protein expression in podocytes were also significantly increased after stimulation with AngII or ROS. CONCLUSIONS Our in vivo and in vitro results show that not only AngII and ROS, but also aldosterone is involved in the regulation of glomerular heparanase expression.
منابع مشابه
Heparanase in glomerular diseases.
Heparanase is an endo-beta(1-4)-D-glucuronidase that degrades heparan sulfate (HS) polysaccharide side chains. The role of heparanase in metastasis, angiogenesis, and inflammation has been established. Recent data suggest a role for heparanase in several proteinuric diseases and an increased glomerular heparanase expression is associated with loss of HS in the glomerular basement membrane (GBM)...
متن کاملInduction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system.
Heparan sulfate (HS) in the glomerular basement membrane (GBM) is important for regulation of the charge-dependent permeability. Heparanase has been implicated in HS degradation in several proteinuric diseases. This study analyzed the role of heparanase in HS degradation in Adriamycin nephropathy (AN), a model of chronic proteinuria-induced renal damage. Expression of heparanase, HS, and the co...
متن کاملRole of Angiotensin II in Reactive Oxygen Species Production and Modulatory Role of Nitric Oxide (NO) in Vessel Responses to AngII in Acute Joint Inflammation in the Rabbit
Introduction: It has been approved that in most tissues NO production increases during acute inflammation and Angiotensin II has a role in production of reactive oxygen species (ROS). As regulation of joint blood flow (JBF) is important in this situation, this study was performed to investigate the interaction of local Ang II and ROS production and the modulatory role of NO on regulation of JBF...
متن کاملAldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells.
In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced in...
متن کاملOxidative DNA Damage in Kidneys and Heart of Hypertensive Mice Is Prevented by Blocking Angiotensin II and Aldosterone Receptors
INTRODUCTION Recently, we could show that angiotensin II, the reactive peptide of the blood pressure-regulating renin-angiotensin-aldosterone-system, causes the formation of reactive oxygen species and DNA damage in kidneys and hearts of hypertensive mice. To further investigate on the one hand the mechanism of DNA damage caused by angiotensin II, and on the other hand possible intervention str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2009